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Our purpose in this paper is to show that the analogy between polynomial splines
and generalized multiquadrics is very strong. In particular, combinations of multi-
quadrics, called �-splines are defined that are analogues of polynomial B-splines.
This paper includes global linear independence, polynomial reproduction, and quasi-
interpolation results for the span of the �-splines on non-uniform bi-infinite meshes
which parallel those for polynomial B-splines. There are also results concerning the
relationship between certain semi-infinite and bi-infinite combinations of �-splines.
These results enable us to obtain error estimates for quasi-interpolation schemes
involving multiquadrics based on a finite number of centres. � 1996 Academic

Press, Inc.

1. INTRODUCTION

There has recently been a great deal of interest in approximation by
radial basis functions, that is, by sums of translates of a single radially sym-
metric function. From this point of view univariate polynomial splines of
odd degree are formed from polynomials plus sums of translates of the
modulus raised to a fixed odd power. The generalized multiquadrics can
then be viewed as obtained by smoothing out the derivative discontinuity
of the function | } | 2k&1. More precisely, let k # N and c>0. Then the basic
generalized multiquadric of order 2k is defined by

,(x; 2k)=(x2+c2)(2k&1)�2, (1.1)
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and the , function centered at tj by

,j, 2k (x)=,(x&tj ; 2k). (1.2)

A multiquadric spline based on a finite number of centers is then a linear
combination of appropriate ,j, 2k 's supplemented by a polynomial of degree
2k&1.

Our purpose in this paper is to show that the analogy between polyno-
mial splines and generalized multiquadrics is very strong. In particular
combinations of multiquadrics, called �-splines, will be defined that are
analogues of polynomial B-splines. The paper includes global linear inde-
pendence, polynomial reproduction, and quasi-interpolation results for the
span of the �-splines on non-uniform bi-infinite meshes which parallel those
for polynomial B-splines. Furthermore, it is shown that if a polynomial is
expressed as a bi-infinite series of �-splines then corresponding semi-infinite
series sum to half the polynomial plus a few generalized multiquadrics. This
result allows us to obtain error estimates for quasi-interpolation by
generalized multiquadrics based on a finite number of centers, from the
results for quasi-interpolation by �-splines on non-uniform bi-infinite
meshes. Our results extend those of Powell [7] and Beatson and Powell
[2] for the case k=1 to general k # N.

2. PRELIMINARIES

In this section we define the �-splines and obtain some identities
involving them.

Consider a mesh t= } } } <tj&1<tj<tj+1< } } } , with t\ j � \� as
j � �. Define the �-spline �j, 2k (= �j, 2k, t) as the weighted divided
difference

�j, 2k(x)=
tj+2k&tj

2
[x&tj , x&tj+1 , ..., x&tj+2k] ,(x; 2k). (2.1)

Hence making use of the expression of a divided difference as a linear com-
bination of the function values at the indicated points, we can rewrite (2.1)
as

�j, 2k (x)=
tj+2k&tj

2
[tj , tj+1 , ..., tj+2k]u ,(x&u ; 2k), (2.2)

where the subscript u, which will often be omitted, indicates that the
divided difference is taken with respect to the u variable. This combination

2 BEATSON AND DYN



File: 640J 298003 . By:BV . Date:12:09:96 . Time:11:24 LOP8M. V8.0. Page 01:01
Codes: 2363 Signs: 1177 . Length: 45 pic 0 pts, 190 mm

of ,j, 2k , ..., ,j+2k, 2k will turn out to have some critical properties in com-
mon with the B-spline Nj, 2k, t . (As is usual Nj, 2k, t denotes the B-spline of
order 2k supported on [tj , tj+2k] and normalized so that the sum of all the
B-splines of a fixed order is 1.)

Before proceeding we need to derive some properties of the functions
,(x; 2k) and their derivatives and integrals. Firstly

D2k,(x; 2k)=[(2k&1)!!]2 c2k

(x2+c2)(2k+1)�2 , k # N, (2.3)

where as usual

m!!= `
[ j : j=m(mod 2) and 0< j�m]

j.

Equation (2.3) can be shown by induction, the induction step following
from applying Leibnitz's rule to

D2k+2[(x2+c2)(x2+c2)(2k&1)�2].

Proceeding from (2.3) a similar induction argument shows that

D2k&1,(x; 2k)=
p(x; 2k)

(x2+c2)(2k&1)�2 , k # N (2.4)

where p(x; 2k) is an odd polynomial in x defined by the recurrence

x, k=0,

p(x; 2k+2)={(2k+1)[(2k&1)!!]2 c2kx (2.5)

+(2k+1) 2k(x2+c2) p(x; 2k), k # N.

It follows immediately from this recurrence that the power expansion of
p(x; 2k) has positive coefficients and that

p(x; 2k)=(2k&1)! x2k&1+ :
k&1

j=1

aj, 2k c2k&2jx2j&1, (2.6)

for some constants aj, 2k not depending on c. Hence

D2k&1,(x; 2k)=\(2k&1)!+O( |x| &2), as x � \�. (2.7)

Defining

A(k)=
(2k&1)!!

(2k)!!
=

1
2

3
4

5
6

} } }
(2k&1)

2k
(2.8)
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we have that

|
�

&�
(x2+c2) &(2k+1)�2 dx=

1
kA(k)c2k , k # N. (2.9)

This can be proven by induction, the induction step following from the
easily verified identity

| (x2+c2)&(2k+1)�2 dx=
x

(2k&1)c2 (x2+c2)&(2k&1)�2

+
2(k&1)

(2k&1)c2 | (x2+c2)&(2k&1)�2 dx. (2.10)

Also trivially

| x(x2+c2)&(2k+1)�2 dx= &
1

2k&1
(x2+c2)&(2k&1)�2+M, (2.11)

so that

|
�

&�
|x| (x2+c2)&(2k+1)�2 dx=

2
(2k&1)c2k&1 . (2.12)

Recall now that a multiple of the polynomial B-spline is the Peano
kernel of the divided difference, so that in particular

[tj , ..., tj+2k] g=
2k

(tj+2k&tj)
1

(2k)! |
�

&�
Nj, 2k, t (u) g(2k)(u) du. (2.13)

Using this with g(u)=,(x&u; 2k) we find that

�j, 2k (x)=
k

(2k)! |
�

&�
Nj, 2k, t (u) ,(2k)(x&u) du. (2.14)

Applying (2.3)

�j, 2k (x)=kA(k)c2k |
�

&�
Nj, 2k, t (u)((x&u)2+c2)&(2k+1)�2 du. (2.15)

It follows from this and the formula

|
�

&�
Nj, l, t (x) dx=

tj+l&tj

l
, (2.16)
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for the integral of a B-spline that �j, 2k is nonnegative and decays like
[tj+2k&tj] d(x, [tj , tj+2k])&(2k+1) as x � \�, where d( } , } ) denotes the
usual distance for R. Also

:
�

j= &�

�j, 2k (x)=kA(k)c2k :
�

j=&�
|

�

&�
Nj, 2k, t (u)((x&u)2+c2)&(2k+1)�2 du,

=kA(k)c2k |
�

&�
((x&u)2+c2)&(2k+1)�2 du,

=1, (2.17)

where in the last step we have used (2.9). Let

S2k (u)=kA(k) c2k(u2+c2)&(2k+1)�2, k # N.

Jones [6, p. 178] gives the formula

|
�

&�
e&itx(1+x2)&(k+1�2) dx=

?1�2 |t|k Kk ( |t| )
(k& 1

2)! 2k&1 ,

where Kk is a modified Bessel function. Hence the Fourier transform of S2k

is

S2k@ (t)=kA(k)c2k 2?1�2

(k& 1
2)! }

t
2c }

k

Kk ( |ct| ). (2.18)

Now from Abromowitz and Stegun [1, p. 375]

Kk (z)=
1
2 \

1
2

z+
&k (k& j&1)!

j ! \&
1
4

z2+
j

+(&)k+1 ln \1
2

z+ Ik (z)

+(&)k 1
2 \

1
2

z+
k

:
�

j=0

('( j+1)+'(k+ j+1))
( 1

4z2) j

j !(k+ j )!

where here ' denotes the digamma function, and

Ik (z)=
( 1

2 z)k

1(k+1)
+O(zk+2), as z � 0.
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Hence

S2k@ (t)= :
k&1

j=0

(k& j&1)!
(k&1)! j! \&c2

4 +
4

t2j

+kA(k)c2k {(&)k+1 2?1�2

(k& 1
2)! \

t
2+

2k

ln \c |t|
2 + (1+O(c2t2))

+O(t2k)= as t � 0. (2.19)

Since Kk (z) is infinitely differentiable on R"[0], it follows from (2.19) that
S2k@ # C2k&1(R). Since Kk (z) is positive for z>0 and k>&1, S2k@ (t) is
positive for t # R. Also from (2.19)

S2k@ (2j)(0)=
(k& j&1)!
(k&1)! j ! \&c2

4 +
j

(2j)! , 0� j�k&1.

Hence from the formula (xr@f )(t)=(id�dt)r f� (t)

|
R

x2jS2k (x) dx=
(2j)! (k& j&1)!

(k&1)! j ! \c2

4 +
j

(2.20)

for 0� j�k&1. Applying Cauchy�Schwarz we have

|
R

|x| 2j&1S2k (x) dx�_|R
x2jS2k (x) dx |

R
x2j&2S2k (x) dx&

1�2

=O(c2j&1), 0� j�k&1.

Also note that in the particular case j=1 (2.20) gives

|
R

x2S2k (x) dx=
c2

2(k&1)
, k�2. (2.21)

3. BASIC PROPERTIES OF �-SPLINES

In this section we derive some fundamental properties of the �-splines.
These include global linear independence, polynomial reproduction proper-
ties, and expressions for , and � splines as convolutions of a kernel with
a power of the modulus and polynomial B-splines respectively.

It will be convenient to have the following notation. Given an infinite mesh
t : } } } <tj&1<tj<tj+1< } } } we define a coefficient sequence d=[dj]�

j= &�

to be in the growth class C(2k, t) if dj=O( |tj |
2k&1) as j � \�. We note
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that for meshes t of finite mesh size the condition is equivalent to the
condition ��

j=&� dj Nj, 2k (x)=O( |x| 2k&1) as x � \�. (See the proof of
Lemma 3.)

We remind the reader of the following well known result.

Lemma 1 (Local linear independence of the B-spline basis). Let k # N
and consider an infinite mesh t : } } } <tj&1<tj<tj+1< } } } . Let s=
��

j= &� aj Nj, k and r=��
j=&� bj Nj, k . Then s(x)=r(x) for all x # (tj , tj+1)

if and only if al=bl for all j&k<l� j.

Proof. Let p be any polynomial of degree k&1. Then p can be expressed
as a linear combination of B-splines of order k. Because of the support
properties of the B-splines this implies that E :=[Nl, k : j&k<l�j] is a
spanning set for the polynomials of degree k&1 considered as a vector
space of functions from (tj , tj+1) to R. From the cardinality of E it follows
that E is not merely a spanning set but also a basis for this vector space.
This is the required result. K

The next result expresses �-splines as a convolution. It is a generaliza-
tion of a result of Powell [7] in the case of the ordinary multiquadric.

Lemma 2 (�-splines as convolutions). Let k # N and consider an infinite
mesh

t : } } } <tj&1<tj<tj+1< } } } , t\j � \�, as j � �,

and h=supj (tj+1&tj)<�. Suppose :=[:j]�
j=&� # C(2k, t). Then

s(x)= :
�

j= &�

:j �j, 2k, t (x)

is absolutely convergent for each x and is given by

s(x)=kA(k)c2k |
�

&�
:
�

j=&�

:j Nj, 2k, t (u)((x&u)2+c2)&(2k+1)�2 du

in which the integral is absolutely convergent.

Proof. Define g as the B-spline series

g(x)=:
j

:j Nj, 2k, t (x)
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and

M(x)=:
j

|:j | Nj, 2k, t (x).

As is familiar there is no convergence problem with these series as only a
finite number of the B-splines are non-zero at any x. Indeed on [ti , ti+1]
only Ni&2k+1, 2k, t , ..., Ni, 2k, t are non-zero. From this, the growth condition
on :, the partition of unity property of the B-splines, and the finiteness of
the mesh size, it follows that

| g(x)|�M(x)=O( |x| 2k&1) as x � \�.

Hence, for each fixed, x

0�kA(k) c2kM(u)((x&u)2+c2)&(2k+1)�2=O(u&2), as u � \�.

Thus the middle quantity above is integrable with respect to u on R. It now
follows from (2.15) and the Lebesgue dominated convergence theorem that

:
�

j= &�

:j �j, 2k, t (x)=kA(k)c2k |
�

&�
:

j

:j Nj, 2k, t (u)((x&u)2+c2)&(2k+1)�2 du

with the series on the left converging absolutely for each x. K

Lemma 3. (Polynomials in the space spanned by the �-splines). Let t
satisfy the conditions of Lemma 2. Suppose that p # ?2k&1 has B-spline series
expansion

p(x)=:
j

dj Nj, 2k (x).

Then

s(x)=:
j

dj �j, 2k (x),

is a polynomial of the same degree as p and with the same leading coefficient.
Moreover, if p # ?1 then s and p are identical and

dj=p(tj*), j=0,\1,\2, ...,

where the points

tj*=
tj+1+ } } } +tj+2k&1

2k&1
,

8 BEATSON AND DYN
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are the special points occurring in the definition of Schoenberg$s variation
diminishing spline.

Proof. Recall the remarkable condition property of the B-spline basis
(see for example de Boor [5, p. 155])

|di |�D2k ":j

dj Nj, 2k"L�[ti+1 , ti+2k&1]

where D2k is independent of the mesh. Hence

|di |�D2k &p&L�[ti+1 , ti+2k&1] .

This together with the finiteness of the mesh size, implies that the coef-
ficients belong to the growth class C(2k, t). Hence, from Lemma 2,

s(x)=kA(k)c2k |
�

&�
:
�

j=&�

dj Nj, 2k (u)((x&u)2+c2)&(2k+1)�2 du

=kA(k)c2k |
�

&�
p(x&u)(u2+c2)&(2k+1)�2 du. (3.1)

Supposing now p is of exact degree m, 0�m�2k&1, so that

p(t)=am tm+am&1 tm&1+ } } } +a0 ,

with am{0, (3.1) implies

s(x)=kA(k) c2kam xm |
�

&�
(u2+c2)&(2k+1)�2 du

+ :
m&1

i=0

bi xi |
�

&�
pi (u)(u2+c2)&(2k+1)�2 du,

where pi (u) # ?m . The first part of the lemma follows.
For p # ?1 Schoenberg's variation diminishing spline with coefficients

dj=p(tj*) satisfies

p(x)=:
j

p(tj*) Nj, 2k (x), \x.

From Lemma 1, that is the local linear independence of the B-splines, the
coefficients p(tj*) are the only coefficients with this property. An application
of (3.1) now gives

9MULTIQUADRATIC B-SPLINES
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s(x)=:
j

p(tj*) �j, 2k (x)

=kA(k)c2k |
�

&�
p(x&u)(u2+c2)&(2k+1)�2 du

=kA(k) c2kp(x) |
�

&�
(u2+c2)&(2k+1)�2 du

=p(x),

where in the second to last step we have used that if g is odd and integrable
��

&� g=0. K

Unfortunately when p has degree greater than 1 the coefficients used to
express p in terms of the B-splines do not suffice to express it in terms of
the �-splines. For example if k>1 and

p(x)=x2=:
j

dj Nj, 2k (x),

then by (2.21)

s(x)=:
j

dj �j, 2k (x)

=x2+kA(k)c2k |
�

&�
u2(u2+c2)&(2k+1)�2 du

=x2+Mc2

where the non-zero constant M, depends on k.

Lemma 4 (Global linear independence of the �-spline basis). Let t be
as in Lemma 2 and suppose d # C(2k, t). Then

s(x)=:
j

dj �j, 2k (x)=0, for all x,

implies d is the zero sequence.

Proof. The assumptions on t and d ensure

g=:
j

dj Nj, 2k ,

satisfies g(x)=O( |x| 2k&1) as x � \� hence is a tempered distribution,
having a generalized Fourier Transform well defined except possibly at

10 BEATSON AND DYN
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zero. (The properties of tempered distributions we use can be found in
Rudin [8, particularly pp. 173�178].) Now

0=s(x)=:
j

dj �j, 2k (x), for all x,

implies by Lemma 2

0=kA(k)c2k {:
j

dj Nj, 2k(})] V (}2+c2)&(2k+1�2], for all x. (3.2)

Taking the generalized Fourier transform we obtain

0= ĝ(!) S2k@ (!), for all !{0, (3.3)

where S2k@ # C 2k&1(R) is the everywhere positive transform of S2k , pre-
viously discussed (see (2.18) and (2.19)) . Hence (3.3) implies the support
of ĝ(!) is !=0. Thus g must be a polynomial. Since from above
g(x)=O( |x| 2k&1), this polynomial has exact degree not exceeding 2k&1.
Then, from Lemma 3, s is a polynomial of the same exact degree. But from
the hypotheses s being identically zero has exact degree &1. Hence
� dj Nj, 2k is identically zero. The result follows from Lemma 1. K

The following corollary goes in the opposite direction to Lemma 3.

Corollary 5 (Polynomial reproduction and a dual representation).
Let k # N, and t be as in Lemma 2. Let

s(x)=:
j

dj �j, 2k (x) and g(x)=:
j

dj Nj, 2k (x). (3.4)

where the first sum may be divergent. Then:

(a) Given any polynomial q # ?2k&1 there is a unique choice of coef-
ficients d such that both s=q and the growth condition d # C(2k, t) hold.

(b) If d # C(2k, t) and s # ?2k&1 then g # ?2k&1 and has the same exact
degree and leading coefficient as s.

(c) If d # C(2k, t) and s # ?1 then s and g are identical.

Proof. (a) Let q # ?2k&1 be fixed and of exact degree m. From
Lemma 3 choosing p(x) there as xm, xm&1, ..., 1 in turn, and then taking
linear combinations, we can find coefficients d satisfying the growth condi-
tion d # C(2k, t) and s=q. From Lemma 4 these coefficients are unique.
Note that in this construction � j dj Nj, 2k is a polynomial with the same
exact degree and leading coefficient as q.

11MULTIQUADRATIC B-SPLINES
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(b) Let d # C(2k, t) and s # ?2k&1. Then from the uniqueness part of
part (a) the coefficients d must be those of the construction of part (a). The
conclusion follows from the remark at the end of the proof of part (a).

(c) From (b) if s # ?1 then g # ?1 . The conclusion then follows from
Lemma 3.

Lemma 6. Let k # N and c>0. Then

Ik=|
u2k&1

((x&u)2+c2)(2k+1)�2 du ={ p(x,u)
((x&u)2+c2)(2k&1)�2 =+C, (3.5)

where p(x, u), considered as a polynomial in u, has degree 2k&1 and
constant part

&
(x2+c2)2k&1

2kA(k)c2k . (3.6)

Proof. By differentiation one easily establishes the recurrences

|
um

((x&u)2+c2)(2k+1)�2 du

=
um&1

(m&2k)((x&u)2+c2)(2k&1)�2

&\2k&2m+1
m&2k + x |

um&1

((x&u)2+c2)(2k+1)�2 du

&\ m&1
m&2k+ (x2+c2) |

um&2

((x&u)2+c2)(2k+1)�2 du

and

| ((x&u)2+c2)&(2k+1)�2 du=
(u&x)

(2k&1)c2 ((x&u)2+c2)&(2k&1)�2

+
2(k&1)

(2k&1)c2 | ((x&u)2+c2)&(2k&1)�2 du.

Since

| ((x&u)2+c2)&3�2 du=
(u&x)

c2 ((x&u)2+c2)&1�2+D,

12 BEATSON AND DYN



File: 640J 298013 . By:BV . Date:12:09:96 . Time:11:24 LOP8M. V8.0. Page 01:01
Codes: 2025 Signs: 844 . Length: 45 pic 0 pts, 190 mm

an easy induction shows that there is an indefinite integral Ik of the form
stated in (3.5). It remains to show that the constant part of the polynomial
in u, p(x, u), is given by (3.6).

To this end make the substitution

cos %=
c

- (x&u)2+c2
and sin %=

&(x&u)

- (x&u)2+c2
,

implying u=x+c tan %. Note in particular that the expression defining
cos % is defined everywhere and is always positive. Then

Ik=|
(x+c tan %)2k&1c sec2 %

(c sec %)2k+1 d%

=
1

c2k | (x cos %+c sin %)2k&1 d%

=
(x2+c2)(2k&1)�2

c2k | cos2k&1t dt

where

t=%&#, cos #=
x

- x2+c2
and sin #=

c

- x2+c2
.

Then with v=sin t

| cos2k&1t dt=| (1&v2)k&1 dv= :
k&1

j=0

\k&1
j + (&1) j v2j+1

2j+1
+E.

Therefore we may choose

p(x, u)=\ c
cos %+

2k&1 (x2+c2)(2k&1)�2

c2k :
k&1

j=0

\k&1
j + (&1) j sin2j+1t

2j+1
.

When u=0, cos %=c�- x2+c2=sin #, sin %=&x�- x2+c2=&cos #, and
sin t=sin(%&#)=cos # sin %&cos % sin #=&1. Therefore

p(x, 0)=&
(x2+c2)2k&1

c2k :
k&1

j=0

(&1) j \k&1
j +

2j+1
.
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Finally

1
2kA(k)

=
(2k&2)!!
(2k&1)!!

=|
?�2

0
sin2k&1x dx= :

k&1

j=0

(&1) j \k&1
j +

2j+1
,

which completes the proof. K

Lemma 7 (, and � splines as convolutions). Let k # N. Then

,(x; 2k)=kA(k)c2k | } | 2k&1 V (}2+c2)&(2k+1)�2, (3.7)

and

�j, 2k (x)=kA(k) c2kNj, 2k, t V (}2+c2)&(2k+1)�2. (3.8)

Proof. For f # C 2k(R) of compact support a straightforward integration
by parts argument shows

f (x)=
1

2 } (2k&1)!
( | } | 2k&1 V f (2k))(x).

That this also holds for the function ,, which grows at infinity, follows
from the following more direct argument.

Let g(x, u) be the indefinite integral

|
u2k&1

((x&u)2+c2)(2k+1)�2 du=
p(x, u)

((x&u)2+c2)(2k&1)�2+C,

discussed in Lemma 6, with C chosen to be 0. Then

|
�

&�

|u| 2k&1

((x&u)2+c2)(2k+1)�2 du= lim
u � �

g(x, u)+ lim
u � &�

g(x, u)&2g(x, 0).

But from the previous lemma the first two terms on the right above cancel
and the last term equals

(x2+c2)(2k&1)�2

kA(k)c2k ,

which establishes (3.7).
The second part of the lemma is already contained in (2.15) and

Lemma 2. K

14 BEATSON AND DYN
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4. POLYNOMIALS AS SEMI-INFINITE SUMS OF �-SPLINES

Fundamental to the work of Beatson and Powell [2] is that linear poly-
nomials are not only in the space of all bi-infinite combinations of �j, 2's
but also in the space of semi-infinite combinations (modulo a few edge ,'s).
In this section we will obtain an analogous result for �-splines of general
order.

The proof used in [2] was a direct integration. An alternative collapsing
sum argument is as follows. Let

;(x)= :
�

j=0

�j, 2k (x).

Then

;(x)= lim
m � �

:
m

j=0

�j, 2k (x)

= 1
2 lim

m � �
:
m

j=0

[[tj+1 , ..., tj+2k] ,(x&u; 2k)

&[tj , ..., tj+2k&1] ,(x&u; 2k)]

= 1
2 [ lim

m � �
[tm+1 , ..., tm+2k] ,(x&u; 2k)&[t0 , ..., t2k&1] ,(x&u; 2k)]

where all the divided differences are with respect to the u variable. Using
the asymptotic expression for ,(2k&1) (2.7) to express the first term on the
right, and the familiar formula

[tl , tl+1 , ..., tl+n] f = :
l+n

j=l

f (tj)
>l+n

i=l, i{ j (tj&ti)

for a divided difference to express the last, it follows that

;(x)=
1
2

&
1
2

:
2k&1

j=0
_ `

2k&1

i=0, i{ j

(tj&ti)&
&1

,j, 2k (x).

More generally we have

Theorem 8 (Polynomials as semi-finite sums of �-splines). Suppose t
satisfies the conditions of Lemma 2 and d # C(2k, t). Further suppose p=
��

j= &� dj �j, 2k is in ?2k&1 . Then q=��
j=&� dj Nj, 2k is also in ?2k&1.

Furthermore the function s, defined by the semi-infinite sum

s(x)= :
�

j=0

dj �j, 2k (x),

15MULTIQUADRATIC B-SPLINES
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can be rewritten as

s(x)=
p(x)

2
+

1
2

:
2k&1

l=0

*l ,l, 2k (x),

where the vector * is the unique solution of

:
2k&1

l=0

*l (}&tl)
2k&1=q.

The theorem also holds in the polynomial spline case c=0.

Proof. We consider firstly the case when c=0 so that �j, 2k is the
polynomial B-spline Nj, 2k and p and q are identical. Then

s(x)= :
�

j=0

dj Nj, 2k (x)

and by the properties of B-splines

s(x)={0,
q(x),

x�t0 ,
x�t2k&1 ,

and has possible jump discontinuities in its (2k&1)st derivative at t0 ,
t1 , ..., t2k&1. We note that

x2k&1
+ =

x2k&1+|x| 2k&1

2

has a jump discontinuity of magnitude (2k&1)! in its (2k&1)st derivative
at x=0 and none elsewhere. Hence,

s(x)= :
2k&1

l=0

*l

2
[(x&tl)

2k&1+|x&tl |
2k&1],

for some constants *0 , ..., *2k&1. This can be rewritten as

s(x)={ :
2k&1

l=0

*l

2
(x&tl)

2k&1=+{ :
2k&1

l=0

*l

2
|x&tl |

2k&1= .

But for x>t2k&1 the terms in curly brackets are equal and sum to q(x).
Hence the first term equals q(x)�2 for all x>t2k&1 , and since it is a polyno-
mial the equality holds for all x # R. Thus

s(x)=
q(x)

2
+{ :

2k&1

l=0

*l

2
|x&tl |

2k&1= .
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Comparing these last two expressions for s(x) we find

:
2k&1

l=0

*l (}&tl)
2k&1=q.

Since [(}&tl)
2k&1 : l=0, ..., 2k&1] forms a basis for ?2k&1 it follows that

the coefficients *0 , ..., *2k&1 are uniquely determined by this last equation.
This establishes the theorem when c=0.

We now turn to the case c>0. From Corollary 5, Lemma 1 and
Lemma 2

q(x)= :
�

j=&�

dj Nj, 2k (x) (4.1)

is the unique polynomial in ?2k&1 such that

p= :
�

j=&�

dj�j, 2k=kA(k)c2k { :
�

j=&�

dj Nj, 2k V (}+c2)&(2k+1)�2= , (4.2)

with the last equality holding term by term. Hence

s= :
�

j=0

dj �j, 2k

=kA(k)c2k :
�

j=0

dj {Nj, 2k V (}+c2)&(2k+1)�2=
=kA(k)c2k {q(})

2
+

1
2

:
2k&1

l=0

*l |}&tl |
2k&1= V (}+c2)&(2k+1)�2

=
p(})
2

+
1
2

:
2k&1

l=0

*l ,l, 2k (}),

where in the second to last equality we have used the already proven result
for c=0. The last equality follows from (4.1), (4.2) and Lemma 7. K

Note that in the special case

q=(}&t0)2k&1= :
�

j=&�

dj Nj, 2k ,

Theorem 8 gives the especially simple expression

:
�

j=0

dj Nj, 2k= 1
2 [(}&t0)2k&1+|}&t0 | 2k&1]=(}&t0)2k&1

+ .
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5. APPROXIMATION BY �-SPLINES

In this section we consider approximation properties of �-splines. We
use quasi-interpolants to show Jackson-type error estimates for non-
uniform meshes and continuous or continuously differentiable functions.
The results are generalisations of some of the results of Buhmann [3, 4]
for bi-infinite uniform meshes, and of results of Beatson and Powell [2] for
quasi-interpolation on a finite mesh with ordinary multiquadrics.

Theorem 9. Let k�1, c>0 and mesh t : } } } <tj&1<tj<tj+1< } } } , with
t\j � \� as j � � be given. Suppose the mesh size h=sup j (tj+1&tj) is
finite. Then for each function f, uniformly continuous on R, the quasi-inter-
polant LB f =��

j=&� f (tj*)�j, 2k satisfies

& f &LB f &L�(R)�\k+1+
c
h+ |( f, h).

The same result holds when tj* is replaced by tj+k in the definition of LB .

Proof. Firstly note that

| f (x)|�| f (0)|+(1+|x| ) |( f, 1), x # R.

Hence, | f (x)| grows at most linearly as x � \�, and LB f is well defined
by Lemma 2.

From the partition of unity property of the �j, 2k's

f (x)&(LB f )(x)= :
�

j=&�

[ f (x)& f (tj*)] �j, 2k (x)

From the properties of the modulus of continuity

| f (x)& f (tj*)|�|( f, |x&tj*| )�\1+
|x&tj*|

h + |( f, h).

Hence using also Lemma 2

} f (x)& :
�

j=&�

f (tj*) �j, 2k (x) }

�kA(k)c2k |
�

&�

:
�

j= &�

| f (x)& f (tj*)| Nj, 2k (u)

((x&u)2+c2)(2k+1)�2 du

� kA(k)c2k |( f, h) |
�

&�

:
�

j=&� \1+
|x&tj*|

h + Nj, 2k (u)

((x&u)2+c2)(2k+1)�2 du. (5.1)

18 BEATSON AND DYN
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Now recall that

tj*=
tj+1+ } } } +tj+2k&1

2k&1
,

so that tj* is increasing in each of tj+1 , ..., tj+2k&1. Hence max[tj*&tj ,
tj+2k&tj*] occurs when all the points are as far apart as possible and
is kh. Since supp(Nj, 2k)=[tj , tj+2k] it follows that Nj, 2k (u) is non-zero
only when |u&tj*|�kh. When this is the case |x&tj*|�|x&u|+kh.
Substituting into (5.1)

| f (x)&(LB f )(x)|�kA(k)c2k |( f, h) |
�

&�

(k+1)+
|x&u|

h
((x&u)2+c2)(2k+1)�2 du.

Using the values for the integrals given in (2.9) and (2.12) we find

| f (x)&(LB f )(x)|�\k+1+
c
h+ |( f, h).

The argument when we replace tj* by tj+k is almost identical. K

Corollary 10. Let k # N and mesh t : t0<t1< } } } <tn be given. Let

B=span[1, ,0, 2k , ,1, 2k , ..., ,n, 2k].

Then

dist( f, B; L�[t0 , tn])�\2k+
c
h+ |( f, h)

for all f # C[t0 , tn], where h=max0� j�n&1 (tj+1&tj) is the mesh size.

Proof. The proof is divided into two cases.

Case 1. n�2k. In this case approximate f by the constant function
s(x)= f(t[n�2]) and note

& f &s&L�[t0 , tn]�(n&[n�2]) |( f, h)�2k|( f, h).
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Case 2. n>2k. In this case extend the mesh to \� by requiring
tj+1&tj=h for all j # Z"[0, n). Then set

f (tk&1), x�tk&1 ,

g(x)={ f (x), tk&1�x�tn&k+1,

f (tn&k+1), tn&k+1�x.

Note that max[tk&1&t0, tn&tn&k+1]�(k&1)h implying that & f&g&L�[t0, tn]

�(k&1) |( f, h), and also that g is uniformly continuous on R with
|(g, h)�|( f, h). Hence by Theorem 9

"g& :
�

j=&�

g(tj+k)�j, 2k"L�(R)

�\k+1+
c
h+ |( f, h).

Thus

" f & :
�

j=&�

g(tj+k)�j, 2k"L�[t0 , tn]

�\2k+
c
h+ |( f, h). (5.2)

Then by Lemma 3 and Theorem 8

:
&1

j= &�

g(tj+k) �j, 2k= f (tk&1) :
&1

j= &�

�j, 2k

is in span[1, ,0, 2k , ,1, 2k , ..., ,2k&1, 2k] and hence is in the space B.
Similarly

:
�

j=n&2k+1

g(tj+k)�j, 2k= f (tn&k+1) :
�

j=n&2k+1

�j, 2k

also belongs to the space B. Since �j, 2k # B for j=0, ..., n&2k the
corollary follows from (5.2). K

Theorem 11. Let k # N and k�2. There exists a constant M, depending
only on k, with the following property. Let c>0 and mesh t : } } } <tj&1<
tj<tj+1< } } } with t\j � \� as j � � be given. Suppose the mesh size
h=sup j (tj+1 &tj) is finite. Then for each function f with f $ uniformly con-
tinuous on R, the quasi-interpolant,

LB f = :
�

j=&�

f (tj*)�j, 2k ,
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satisfies

& f &LB f &L�(R)�M {c2

h
+c+h= |( f $, h).

Proof. Firstly note that

| f $(x)|�| f $(0)|+(1+|x| ) |( f $, 1) x # R,

so that | f (x)| grows at most quadratically as x � \�. Hence LB f is well
defined by Lemma 2.

Now from Lemma 3, LB reproduces linears. It is after all the analogue
of the variation diminishing spline. Hence if p is the linear Taylor polyno-
mial of f at x

:
�

j=&�

p(tj*) �j, 2k (x)=p(x)= f (x).

Thus the approximation error is

| f (x)&(LB f )(x)|= } :
�

j=&�

[p(tj*)& f (tj*)] �j, 2k (x)} .
Using the bound

| f (tj*)&p(tj*)|�|tj* &x| |( f $, |tj*&x| )

from Taylor$s theorem the approximation error is bounded above by

:
�

j=&�

|x&tj*| |( f $, |x&tj*| ) �j, 2k (x)

� :
�

j=&�

|x&tj*| \1+
|x&tj*|

h + |( f $, h) �j, 2k (x). (5.3)

Writing

S2k (u)=kA(k) c2k(u2+c2)&(2k+1)�2,

as before, the right hand side of (5.3) becomes

|( f $, h) |
�

s=&�
:
�

j=&� {(x&tj*)2

h
+|x&tj*|= Nj, 2k (u) S2k (x&u) du. (5.4)

But if Nj, 2k (u) is non-zero then |u&tj*|�kh implying

|x&tj*|�|x&u|+kh.
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Hence (5.4) is bounded above by

|( f $, h) |
�

u=&� {1
h

(x&u)2+(2k+1) |x&u|+k(k+1)h= S2k (x&u) du.

Since k�2, (2.9), (2.12) and (2.21) show there exists a constant M1 ,
depending only on k such that

|
�

&�
|u| j S2k (u) du�M1 c j, 0� j�2,

and the result follows. K

Corollary 12. Let k # N and k�2. There exists a constant M
depending only on k with the following property. Let c>0 and mesh t : t0<
t1< } } } <tn be given. Let

C=span[1, x, ,0, 2k , ,1, 2k , ..., ,n, 2k].

Then

dist( f, C; L�[t0 , tn])�M {c2

h
+c+h= |( f $, h)

for all f # C1[t0 , tn] where h=max0� j<n&1(tj+1&tj) is the mesh size.

Proof. The proof is divided into two cases.

Case 1. n�2k. In this case approximate f by the linear function
s(x)= f(t[n�2])+ f $(t[n�2])(x&t[n�2]) and note

& f &s&L�[t0 , tn]�(n&[n�2]) h|( f $, kh)�k2h|( f $, h).

Case 2. n>2k. In this case extend the mesh to \� by requiring
tj+1&tj=h for all j # Z"[0, n). Then set

f (t*&1)+ f $(t*&1)(x&t*&1), x�t*&1 ,

g(x)={ f (x), t*&1�x�t*n&2k+1 ,

f (t*n&2k+1)+ f $(t*n&2k+1)(x&t*n&2k+1), t*n&2k+1�x.

Then & f &g&L�[t0 , tn]�(k&1) h|( f $, (k&1)h)�(k&1)2 h|( f $, h) and g$
is uniformly continuous on R with |(g$, h)�|( f $, h). By an argument
analogous to that in the latter part of the proof of Corollary 10, excepting
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that the application of Theorem 9 is replaced by an application of
Theorem 11, we find that (LC g) :=��

j=&� g(tj*)�j, 2k # C, and

& f &LC g&L�[t0 , tn]�M2 {c2

h
+c+h= |( f $, h). K

We now turn to the case k=1 discussed in Beatson and Powell [2].
Extend f # C 1[t0 , tn] outside [t0 , tn] by appending first degree Taylor
polynomials at t0 and tn . They show that the operator LB f of Theorem 9
applied to this extended f becomes (in the notation of the current paper)

(LB f )(x)= :
�

j= &�

f (tj*) �j, 2(x)= :
�

j= &�

f (tj+1) �j, 2(x)

=
f $(t0)

2
[(x&t0)&,0(x)]+

f (t0)
2 _1+

,1 (x)&,0(x)
t1&t0 &

+ :
n&1

j=1

f (tj) �j&1, 2(x)

+
f (tn)

2 _1&
,n (x)&,n&1(x)

tn&tn&1 &+
f $(tn)

2
[,n (x)&(tn&x)].

(5.5)

Note that in [2], �j denotes a combination of ,j&1, 2 , ,j, 2 , and ,j+1, 2

whereas here it denotes a combination of ,j, 2 , ,j+1, 2 and ,j+2, 2 . They
obtain an estimate for & f &LB f & when f has a Lipschitz derivative. It is
natural therefore to seek an estimate in terms of |( f $, h).

Theorem 13. Let k=1. There exists a constant M with the following
property. Let a mesh t : t0<t1< } } } <tn be given and (LB f ) be defined by
(5.5), then

& f &LB f &L�[t0 , tn]�M {c+h+
c2

h
+

c2

h
log \1+\tn&t0

c ++= |( f $, h)

for all f # C 1[t0 , tn] where h is the mesh size.

Proof. This proof is quite intricate but involves no essentially new
ideas. It has therefore been omitted. K
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